Litong Xu 1,2†Dongwei Li 1†Junwei Chang 1Deming Li 1[ ... ]Zuoqiang Hao 1,4,*
Author Affiliations
Abstract
1 Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3 e-mail: ttxi@ucas.ac.cn
4 e-mail: zqhao@sdnu.edu.cn
This publisher’s note corrects the authors’ order and affiliations in Photon. Res.10, 802 (2022)PRHEIZ2327-912510.1364/PRJ.443501.
Photonics Research
2022, 10(4): 04000973
Litong Xu 1,2†Dongwei Li 1†Junwei Chang 1Deming Li 1[ ... ]Zuoqiang Hao 1,4,*
Author Affiliations
Abstract
1 Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3 e-mail: ttxi@ucas.ac.cn
4 e-mail: zqhao@sdnu.edu.cn
We demonstrate numerically and experimentally the generation of powerful supercontinuum vortices from femtosecond vortex beams by using multiple thin fused silica plates. The supercontinuum vortices are shown to preserve the vortex phase profile of the initial beam for spectral components ranging from 500 nm to 1200 nm. The transfer of the vortex phase profile results from the inhibition of multiple filamentation and the preservation of the vortex ring with relatively uniform intensity distribution by means of the thin-plate scheme, where the supercontinuum is mainly generated from the self-phase modulation and self-steepening effects. Our scheme works for vortex beams with different topological charges, which provides a simple and effective method to generate supercontinuum vortices with high power.
Photonics Research
2022, 10(3): 03000802
Author Affiliations
Abstract
1 School of Science, Changchun University of Science and Technology, Changchun 130022, China
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3 Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
We show the intensity control of filamentation in fused silica by temporally shaping the femtosecond laser pulse. The arbitrary control of filamentation intensity has been obtained by the feedback control based on the genetic algorithm, and the peak intensity of filament has changed from about 670 to around 2100 (charge-coupled device counts). This modulation is in qualitative agreement with the simulation results. It is shown that the control of the intensity is realized by modulating the peak power of the shaped pulse.
320.2250 Femtosecond phenomena 320.5540 Pulse shaping 
Chinese Optics Letters
2019, 17(12): 123201
常峻巍 1,*许梦宁 2王頔 1朱瑞晗 1,*[ ... ]郝作强 1,*
作者单位
摘要
1 长春理工大学理学院, 吉林 长春 130022
2 中国科学院大学物理科学学院, 北京 101407
利用基于液晶空间光调制器的飞秒激光脉冲整形技术,对飞秒激光在熔融石英中形成等离子体丝的过程进行优化控制研究。实验结果表明:通过脉冲整形可以在固体介质中的指定位置产生等离子体丝。实现了整形脉冲在熔融石英中成丝起点的长距离可控移动,最大移动量达到5.4 mm。通过求解(3+1)维非线性薛定谔方程,对整形脉冲在熔融石英中的成丝过程进行理论模拟研究,得到了与实验一致的结果。研究结果表明:等离子体丝起始位置是由整形飞秒脉冲的中心峰值强度和包络分布决定的。
超快光学 脉冲整形 等离子体丝 遗传算法 成丝起点 
光学学报
2019, 39(1): 0126021
Author Affiliations
Abstract
1 State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
2 Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3 Department of Physics, Graduate University of Chinese Academy of Sciences, Beijing 100049, China
4 Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China
The propagation of picosecond deep ultraviolet laser pulse at wavelength of 193 nm in air is numerically investigated. Long plasma channel can be formed due to the competition between Kerr self-focusing and ionization induced defocusing. The plasma channel with electron density of above 10<sup>13</sup>/cm<sup>3</sup> can be formed over 70 m by 50-ps, 20-mJ laser pulses. The fluctuation of laser intensity and electron density inside ultraviolet (UV) plasma channel is significantly lower than that of infrared pulse. The linear absorption of UV laser by air is considered in the simulation and it is shown that the linear absorption is important for the limit of the length of plasma channel.
等离子体通道 自聚焦 深紫外激光 320.5550 Pulses 320.7110 Ultrafast nonlinear optics 320.7090 Ultrafast lasers 
Chinese Optics Letters
2009, 7(9): 865

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!